

# FM23-382

Mixed-signal Voice Processor for Mobile Applications

Product Data Sheet (Product Information) version 1.0

#### **PRE-PRODUCTION INFORMATION**

THIS DOCUMENT CONTAINS INFORMATION ON A PREPRODUCTION PRODUCT. SPECIFICATIONS AND PREPRODUCTION INFORMATION HEREIN ARE SUBJECT TO CHANGE WITHOUT NOTICE.

FORTEMEDIA, INC. PRODUCTS ARE NOT INTENDED FOR LIFE SAVING NOR LIFE SUSTAINING APPLICATIONS AND FORTEMEDIA, INC. THUS, ASSUMES NO LIABILITY IN SUCH USAGES. FORTEMEDIA, INC. PRODUCTS MAY ONLY BE USED IN LIFE-SUPPORT DEVICES OR SYSTEMS WITH THE EXPRESS WRITTEN APPROVAL OF FORTEMEDIA, INC., IF A FAILURE OF SUCH COMPONENTS CAN REASONABLY BE EXPECTED TO CAUSE THE FAILURE OF THAT LIFE-SUPPORT DEVICE OR SYSTEM, OR TO AFFECT THE SAFETY OR EFFECTIVENESS OF THAT DEVICE OR SYSTEM. LIFE SUPPORT DEVICES OR SYSTEMS ARE INTENDED TO BE IMPLANTED IN THE HUMAN BODY, OR TO SUPPORT AND/OR MAINTAIN AND SUSTAIN AND/OR PROTECT HUMAN LIFE. IF THEY FAIL, IT IS REASONABLE TO ASSUME THAT THE HEALTH OF THE USER OR OTHER PERSONS MAY BE ENDANGERED.

WE HEREIN DISCLAIM ANY AND ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF NON-INFRINGEMENT, REGARDING CIRCUITS, DESCRIPTIONS AND CHARTS STATED HEREIN.

Fortémedia, SAM, ForteVoice, Fortémedia and SAM logos are trademarks of Fortémedia,, Inc. All other trademarks belong to their respective companies. Copyright © 2013 Fortémedia all rights reserved

# **TABLE OF CONTENT**

| STATUS INFORMATION                                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------------|--|
| 1. INTRODUCTION                                                                                                      |  |
| <ul> <li>1.1 Overview</li> <li>1.2 Key Features</li> <li>1.3 Pin Configuration</li></ul>                             |  |
| 2. FUNCTIONAL DESCRIPTION                                                                                            |  |
| <ul> <li>2.1 SERIAL HOST INTERFACE - SHI (PINS B1, C2)</li></ul>                                                     |  |
| 3. ELECTRICAL AND TIMING SPECIFICATION                                                                               |  |
| <ul> <li>3.1 Absolute Maximum Ratings</li> <li>3.2 DC Characteristics</li> <li>3.3 Timing Characteristics</li> </ul> |  |
| 4. PIN DEFINITION DETAILS                                                                                            |  |
| 5. PACKAGE DIMENSIONS                                                                                                |  |
| 6. ORDERING INFOMATION                                                                                               |  |
| REFERENCE                                                                                                            |  |
| TERMINOLOGY                                                                                                          |  |
| RELATED REFERENCES                                                                                                   |  |

# **Status Information**

The status of this Product Data Sheet is **Product Information**.

#### **Advance Information**

Information for designers concerning Fortemedia product in development. All values specified in the document are the target values of the design. Minimum and maximum values, if specified, are only given as guidance to the final specification limits and must not be considered as the final values.

All detailed specifications including pinouts and electrical specifications may be changed by Fortemedia without notice.

#### **Pre-production Information**

Pinout and mechanical dimension specifications finalized. All values specified in the document are the target values of the design. Minimum and maximum values, if specified, are only given as guidance to the final specification limits and must not be considered as the final values.

All electrical specifications may be changed by Fortemedia without notice.

#### **Product Information**

Final Data Sheet including the guaranteed minimum and maximum limits for the electrical specifications.

Product Data Sheets supersede all previous document versions.

#### Note

While every case has been taken to ensure the accuracy of the contents in this Data Sheet, Fortemedia cannot accept responsibility for any errors. Fortemedia reserves the right to make technical changes to its products as part of its development program.

## **FIGURES**

| Figure 1: 20-pin WLCSP Pin Configuration - Bottom View | 9  |
|--------------------------------------------------------|----|
| Figure 2: FM23 Hardware Block Diagram                  |    |
| Figure 3: FM23 Example Usage: with Mobile Processor    | 13 |
| Figure 4: SHI Data Transfer Command Protocol           | 15 |
| Figure 5: SHI Command Sequence                         | 15 |
| Figure 6: Analog Mic0/Mic1 Input Block Diagram         |    |
| Figure 7: Analog Line-In Input Block Diagram           |    |
| Figure 8: Analog Output Block Diagram                  |    |
| Figure 9: Operation State Transition Diagram           |    |
| Figure 10: Cold Reset Timing Chart                     |    |
| Figure 11: External Hardware Power Reset Timing Chart  |    |
| Figure 12: External Power-Down Timing Chart            |    |
| Figure 13: CSP Package Dimensions                      |    |

# TABLES

| Table 1: SHI START and STOP data transition           | 14 |
|-------------------------------------------------------|----|
| Table 2: SHI Command Name                             | 16 |
| Table 3: SHI Command Byte Format                      | 16 |
| Table 4: SHI Command Byte Bit Definition              | 16 |
| Table 5: Absolute Maximum Ratings                     |    |
| Table 6: DC Characteristics                           | 23 |
| Table 7: Timing Characteristics                       | 24 |
| Table 8: WLCSP Pin Description                        | 27 |
| Table 9: Available Package Type and Temperature Range |    |
| Table 10: Terminology                                 |    |
| Table 11: Document References                         |    |
|                                                       |    |

# **Document History**

| Revision | Date         | Description                                                                                                                                |  |  |
|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| V0.1     | Oct 30, 2012 | Initial                                                                                                                                    |  |  |
| V0.2     | Dec 27, 2012 | Modify the CSP pin definition, add QFN package pin description                                                                             |  |  |
| V0.3     | Jan 29, 2013 | Change PDMDATA & PDMCLK pin to Reserved pin                                                                                                |  |  |
| V0.4     | Feb 20, 2013 | Modify MCLK and $V_{IH}$ , $V_{IL}$ , $V_{OH}$ and $V_{OL}$ based on the standard, Change the minimum of VDD and VDDA from 1.62V to 1.71 V |  |  |
| V0.5     | Mar 2, 2013  | Change 3.3V voltage tolerance for all digital inputs, Add VDD ripple 100mV in Table 5                                                      |  |  |
| V0.6     | Mar 11, 2013 | Editorial updates, for 1 <sup>st</sup> release                                                                                             |  |  |
| V0.7     | May 03,2013  | Update Order Code & Package Dimension for FM23-CE-382B                                                                                     |  |  |
| V1.0     | Aug 30,2013  | Editorial updates, for official release                                                                                                    |  |  |

# 1. Introduction

Fortemedia FM23 is a low-cost, ultra-compact, mixed-signal voice processor that integrates advanced acoustic echo cancellation (AEC) and beamforming noise reduction capabilities targeted for easy integration into mobile device applications.

With Fortémedia's proprietary voice processing technology, the FM23 uses advanced beam-forming technology and filters out the unwanted background noises, and the AEC eliminates any acoustic echo in handheld and handsfree voice conversation, providing natural and clear full-duplex conversations for users in any environment.

### **1.1 Overview**

With integrated Analog-to-Digital(A/D) and Digital-to-Analog(D/A) interfaces on chip, the FM23 is a mixed signal voice processor integrating an on-chip digital signal processor (DSP) and hardware computation accerlerator with its RAM, ROM, and Serial Host Interface. The FM23 is packaged in a 20-pin WLCSP and occupies a footprint of 2.6 x 2.2 mm<sup>2</sup> such that minimal board space is taken up.

## **1.2 Key Features**

#### Highly integrated mixed-signal Voice PRocessor

- Low-cost, and high performance voice processor with built-in hardware support for analog signal input and output
- Three 16-bit differential ADC's for two microphone inputs and one line level input, each sampling at 8KHz at 84 dB SNR
- Each analog microphone input channel has built-in Programmable Gain Adjust(PGA) and pre-amplifier
- One 16-bit differential DAC for the line level output
- No external RAM required
- Serial Host Interface(SHI) is I<sup>2</sup>C-compatible and supports on-the-fly command and parameter download for processor control and configuration, at speed up to 400Kbps
  - Flexible clocking input with built-in Phase-Locked Loop (PLL)
    - supports 3 to 32MHz in 1 MHz steps, and
      - 4.096 to 40.96 MHz with a multiple of 4.096MHz steps
- Low power consumption:
  - 1-microphone or 2-microphone mode: ~25mW.
  - Power down mode: current consumption of 5µA(typical)
  - 1.8V for all analog power domain
  - 1.8V for digital and core power domain.

#### Specifications

0

- 0.11um low power process
- Packages:
  - Package: 20-ball WLCSP, 2.6 x 2.2 mm<sup>2</sup>, 0.5mm pitch

| FM-23 Voice Processing Capability                       | Inbound Voice from<br>far-end | Outbound Voice towards far-end |
|---------------------------------------------------------|-------------------------------|--------------------------------|
| Acoustic Echo Canceller                                 |                               | Yes                            |
| User Configurable 1- and 2- microphone Voice Processing |                               | Yes                            |
| Stationary and Non-Stationary Noise Reduction           |                               | Yes                            |
| Beamforming                                             |                               | Yes                            |
| Automatic Gain Control                                  | Yes                           | Yes                            |
| Audio Equalization                                      | Yes                           | Yes                            |
| Dynamic Range Control                                   | Yes                           | Yes                            |
| Analog signal input and output                          | Yes                           | Yes                            |

# Summary of FM-23 Voice Processing Functions

# **1.3** Pin Configuration

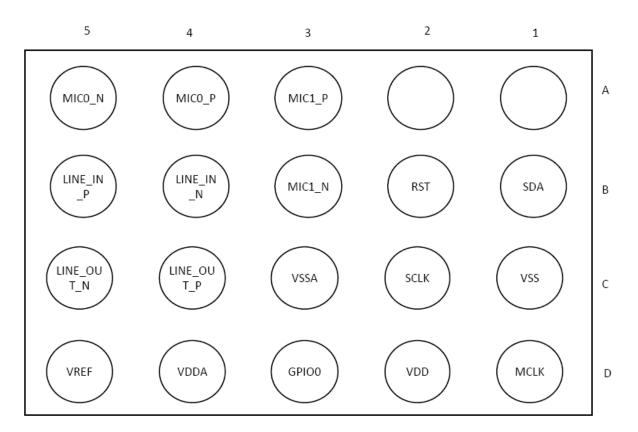



Figure 1: 20-pin WLCSP Pin Configuration - Bottom View

# **1.4 Device Terminal Functions**

| Clock | Lead | Pad Type | Supply<br>Domain | Description           |
|-------|------|----------|------------------|-----------------------|
| MCLK  | D1   | In       | VDD              | For external clock in |

| Controls | Lead | Pad Type | Supply<br>Domain | Description                  |
|----------|------|----------|------------------|------------------------------|
| GPIO0    | D3   | In/Out   | VDD              | General Purpose Input/Output |
| RST_     | B2   | In       | VDD              | Reset control, active high   |

| Power Supplies | Lead | Description                                |  |
|----------------|------|--------------------------------------------|--|
| VDD            | D2   | Positive supply for digital input/output   |  |
| VDDA           | D4   | Positive supply for analog                 |  |
| VSSA           | C5   | Ground Connection – Analog Ground          |  |
| vss            | C1   | Ground Connection – Digital Ground         |  |
| VREF           | VREF | Reference Voltage Output – about ½ of VDDA |  |

| Serial Host Interface<br>(SHI) | Lead | Pad Type | Supply<br>Domain | Description                       |
|--------------------------------|------|----------|------------------|-----------------------------------|
| SDA                            | B1   | In/Out   | VDD              | IIC-compatible serial slave data  |
| SCL                            | C2   | In       | VDD              | IIC-compatible serial slave clock |

| Analog Audio I/O | Lead | Pad Type   | Supply<br>Domain | Description                |
|------------------|------|------------|------------------|----------------------------|
| MIC0_P           | A4   | Analog In  | VDDA             | main microphone input      |
| MICO_N           | A5   | Analog In  | VDDA             | main microphone input      |
| MIC1_P           | A3   | Analog In  | VDDA             | secondary microphone input |
| MIC1_N           | B3   | Analog In  | VDDA             | secondary microphone input |
| LINE_IN_P        | B5   | Analog In  | VDDA             | line input                 |
| LINE_IN_N        | B4   | Analog In  | VDDA             | line input                 |
| LINE_OUT_P       | C4   | Analog Out | VDDA             | line output                |
| LINE_OUT_N       | C5   | Analog Out | VDDA             | line output                |

# **1.5 Internal Hardware Block Diagram**

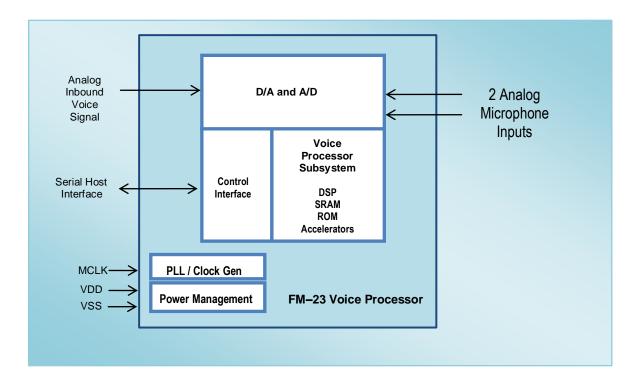



Figure 2: FM23 Hardware Block Diagram

# **1.6 System Application Block Diagram**

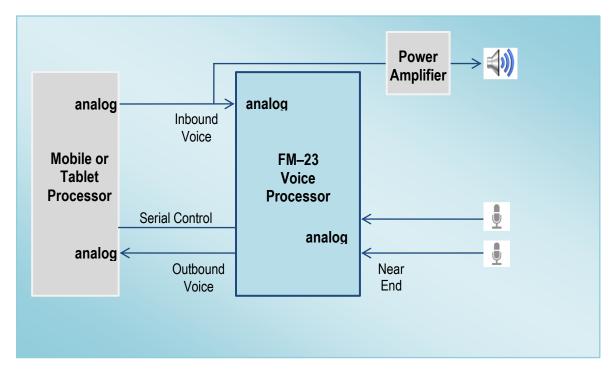



Figure 3: FM23 Example Usage: with Mobile Processor

# 2. Functional Description

## 2.1 Serial Host Interface - SHI (Pins B1, C2)

The FM23 implements a Serial Host Interface (SHI) which is an IIC-compatible, slave mode only, serial interface between FM23 and an external processor for control information communications. It can be used to

- Transmit and receive control commands at run-time, and
- Download the necessary initialization configuration parameters during reset and power-up, should the system designer elect this option.

On this SHI, FM23 communicates to the host processor through a bi-directional serial data line (SDA) and a serial clock line (SCL). The FM36 SHI operates as a slave device and its serial clock is driven from the host. The master on the host processor controls SCL clocking, data transfer start bit and stop bit, and also addressing of slave devices. The FM23 supports 8-bit address and its device address is "**OxCO**".

Depending on the host processor instruction, the SHI can operate as a transmitter (writing data) or a receiver (reading data). Note that the SHI interface supports the standard clock speed of 100 kHz or up to a maximum speed of 400 kHz (if MCLK is above 10MHz).

The standard byte format of SHI data line must be 8-bit long in every byte. Each byte consists of 8 bits plus 1 acknowledge bit, and it is one data bit per clock pulse. If operating as a receiver, it will return an acknowledge bit upon each successful byte transfer, otherwise it will return a NOACK signal. There is no restriction on the maximum number of bytes per data transfer. Data transfer can be aborted if the master device generate a STOP condition to terminate a transfer. Each data transfer frame must start with a START or a RESTART symbol and ends by a STOP symbol.

#### Table 1: SHI START and STOP data transition

| S: START | SDA transition from 1 to 0 when SCL=1 |
|----------|---------------------------------------|
| P: STOP  | SDA transition from 0 to 1 when SCL=1 |

Within the data transfer frame, multiple command sequences are allowed and there is no restriction on the maximum numbers of bytes per frame. Each command sequence starts with a sync word "0xFCF3", follows by a command entry byte (e.g. 0x3B is MEM\_WRITE) and number of bytes per specific command. The following figures and tables summarize the details for the SHI command sequence.

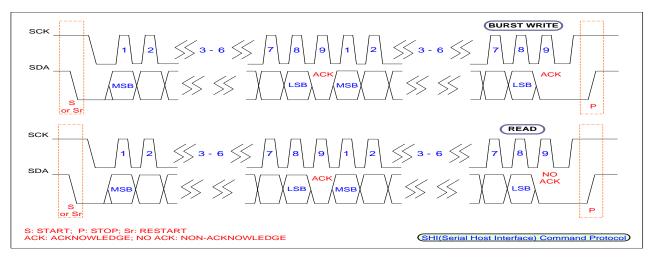



Figure 4: SHI Data Transfer Command Protocol

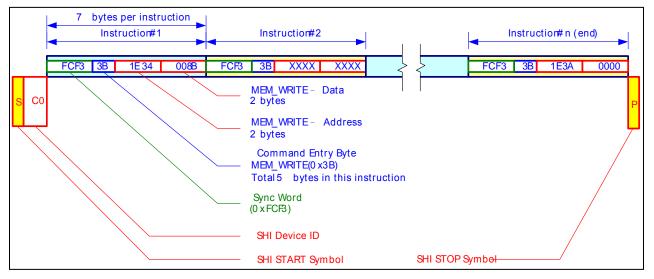



Figure 5: SHI Command Sequence

### Table 2: SHI Command Name

|                    | Command                                              | Number             | of the bytes | for each functional bytes |
|--------------------|------------------------------------------------------|--------------------|--------------|---------------------------|
| Command Entry Name | Entry Byte         Address<br>Byte         Data Byte | Address            | Data Puta    | Total                     |
|                    |                                                      | (cmd+address+data) |              |                           |
| MEM_WRITE          | 0x3B                                                 | 2                  | 2            | 5                         |
| MEM_READ           | 0x37                                                 | 2                  | 0            | 3                         |
| REG_READ           | 0x60                                                 | 1                  | 0            | 2                         |

#### Table 3: SHI Command Byte Format

| Serial Command Entry Byte |                       |           |           |    |                     |                          |                |                                                                                         |
|---------------------------|-----------------------|-----------|-----------|----|---------------------|--------------------------|----------------|-----------------------------------------------------------------------------------------|
| Bit                       | D7                    | D6        | D5        | D4 | D3                  | D2                       | D1             | D0                                                                                      |
| Description               | A                     | ccess obj | ject type |    | Read<br>/Write      |                          | a byte<br>nber | Address byte number                                                                     |
| Value Details             | Data Mem<br>DataPort( | 7.        | ,         | r) | Read: 0<br>Write: 1 | 2bytes<br>1byte<br>0byte | (00b)          | Two address bytes(1b)<br>Data memory access<br>One address byte(0b)<br>Data port access |

### Table 4: SHI Command Byte Bit Definition

| Data length | 1byte                |                                                                                            |  |  |  |
|-------------|----------------------|--------------------------------------------------------------------------------------------|--|--|--|
| Bit         | Pattern Descriptions |                                                                                            |  |  |  |
| D7 - D4     | 0011b                | For accessing Data Memory                                                                  |  |  |  |
| D7 - D4     | 0110b                | For reading the Data ports.                                                                |  |  |  |
| D3          | 0b                   | Read                                                                                       |  |  |  |
| 03          | 1b                   | Write                                                                                      |  |  |  |
|             | 00b                  | 1 byte data write, or in Data Port Read mode.                                              |  |  |  |
| D2-D1       | 01b                  | 2 bytes data write                                                                         |  |  |  |
|             | 11b                  | 0 byte data (in Data Memory Read mode).                                                    |  |  |  |
| D0          | 1b                   | Two address bytes for accessing Data Memory                                                |  |  |  |
|             | 0b                   | One address byte for reading Data Port (Either 0x25 for lower byte or 0x26 for upper byte. |  |  |  |

# 2.2 Analog Data Input (A4, A5, A3, B3, B4, B5)

The FM23 has three ADC's that are sigma-delta converters with 16-bit resolution and sampling at 8 kHz. All 3 converters are of differential analog input type, and each of the microphone inputs (MIC0 and MIC1) has built-in microphone pre-amplifiers. The line-in (LINE\_IN) analog input contains is used in FM23-382 for the echo reference input when echo cancellation function is applied. It is connected to the line-out or speaker-out ports from the output of the audio codec system.

The differential inputs of MIC0/1 ADCs are 0.56 Vpp in full scale. Gain range is from 0 to 21dB in +3 dB increments programmable by setting the PGA gain.

The differential input of Line in ADC is 2.0  $V_{PP}$  in full scale. Gain range is from -3 to +9dB in +3 dB increments programmable by setting the PGA gain.

For details on programming the attenuation and gains of ADCs, please refer to the "FM23-382 Configuration Guide" document.



Figure 6: Analog Mic0/Mic1 Input Block Diagram



#### Figure 7: Analog Line-In Input Block Diagram

A brief summary of recommended Microphone Specification for the analog microphones is tabulated below:

| Parameter         | Value                                           |
|-------------------|-------------------------------------------------|
| Туре              | Electric Condenser Microphone, Omni-directional |
| Sensitivity       | -42dB±3dB (1V/Pascal)                           |
| Operating Voltage | 2V (standard)                                   |
| Impedance         | 2.2kΩ maximum                                   |

# 2.3 Analog Data Output (C4, C5)

The FM23-382 has a Digital-to-Analog Converter (DAC) working at 8 kHz sample rate. There are 16 bits thermometer code input to DAC and DAC provides differential analog output with programmable attenuations and gains.

The LINE\_OUT DAC provides an analog voice output signal and sends the processed voice signal to the uplink voice path of the system. The differential input of Line Output DAC is 2.0  $V_{PP}$  in full scale.

The DAC programmable gain control table is listed on Table 5 as the following. The 3-bit setting controls DAC from 0dB to -21 dB with a -3 dB increment.

For details on programming the attenuation and gains of ADCs, please refer to the "FM23-382 Configuration Guide" document.

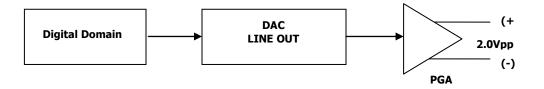



Figure 8: Analog Output Block Diagram

### 2.4 Power

The FM23-382 has two power domains, the digital with a  $V_{DD}$  pin, and analog with a  $V_{DDA}$  pin. The analog domain supplies all the analog circuitry and the on-chip PLL. The domain supplies to the DSP and I/O's.

For better immunity of noise, the user should separate the analog and digital planes in the system board design with proper ferrite beads or resistors.

# 2.5 Clock (D1)

The FM23-382 provides multiple external clocks which can be commonly found in cellular phone platforms. For the external clock input, 3MHz to 32MHz with a multiple of 1MHz or 4.096 MHz to 40.96 MHz with a multiple of 4.096 MHz can be applied.

To set up various input frequency, please refer to parameter "**0x1E50**" in "FM23-382 Parameters Tuning Guide".

The recommended external clock usage is summarized in the table below:

| Clock               | Recommended Value                                                                              |
|---------------------|------------------------------------------------------------------------------------------------|
| Operation frequency | 3MHz to 32MHz with a multiple of 1MHz.<br>4.096 MHz to 40.96 MHz with a multiple of 4.096 MHz. |
| Frequency tolerance | ± 100 ppm                                                                                      |

## 2.6 Reset and warm restart

To trigger the internal power-up reset circuit, the voltage of VDD digital power must be lower than 0.4V before ramping high to restart a reset process.

Note that there should be a minimum waiting time,  $t_{RST}$  (see table 7), between power-off and power-on. For systems with long power down discharge time, it is recommended to incorporate a discharge circuitry for the power-on restart process.

The RESET\_ pin should have a  $100k\Omega$  pull-up resistor when this function is not used.

# 2.7 Power Down Mode

The FM23 supports a power-down mode by the host setting the address 0x1E79 via the serial control interface. FM23 only supports power down reset mode.

The minimum power-down period would be around 100us, and the power-down mode can be exited and FM-23 resumes operation by applying Reset\_ pin.

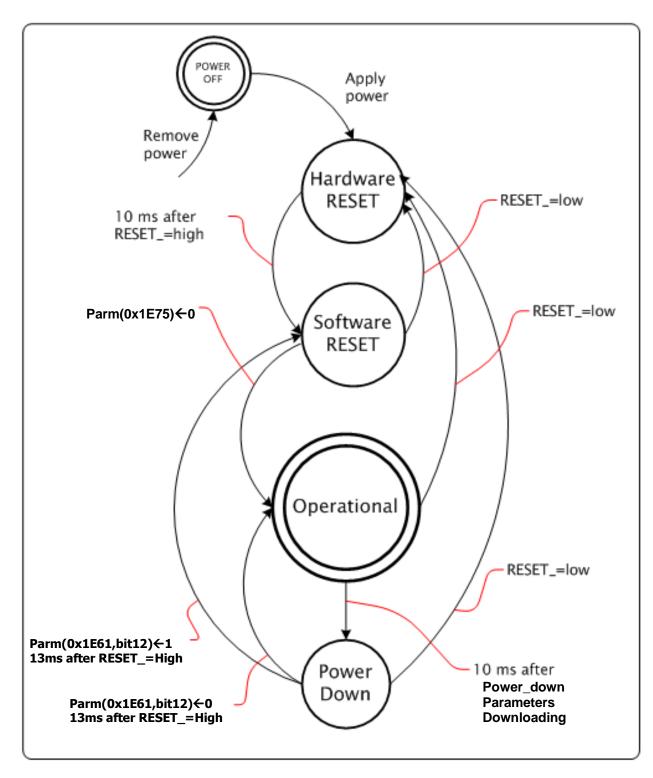
If the power-down resume mode is not selected, the parameters for the FM23 must be reloaded after recovering from power-off. For more details, please refer to the "FM23-382 Configuration Guide".

## 2.8 Bypass Mode - Analog Communication Mode

The FM23 supports an analog bypass mode by the host processor setting a register via the serial host control interface, and this mode is often referred to as the Analog Communication mode or Analog Communication bypass.

The analog input signal is routed directly to the analog output signal, bypassing the internal ADC, DSP, and DAC. Note that the gain controls and internal pre-amplifiers are still working with the input and output signal.

In this mode, the gain settings of the programmable PGA are saved and another set of new gains can be set for this analog communication bypass. Upon exit of this Analog Communication Bypass mode and resuming normal operation mode, the saved gains can be restored.


## 2.9 Normal Operation

The normal operation mode is working when IRQ\_ANA pin is at logic low state and triggered by a falling edge.

In the normal operation mode, the FM-23 can be set up to perform voice processing in either singlemicrophone input mode or dual-microphone input mode, depending on the application's system design and usage. For both cases the acoustic echo cancellation and stationary noise reduction functions are always present.

For a dual-microphone system, the additional beamforming processing that allows directional sound pickup should provide additional noise suppression benefits to the user since it is effective in reducing nonstationary background noises.

# 2.10 Operational States





# 3. Electrical and Timing Specification

Note that all data in this section are measured at room temperture and in normal operating condition.

# **3.1 Absolute Maximum Ratings**

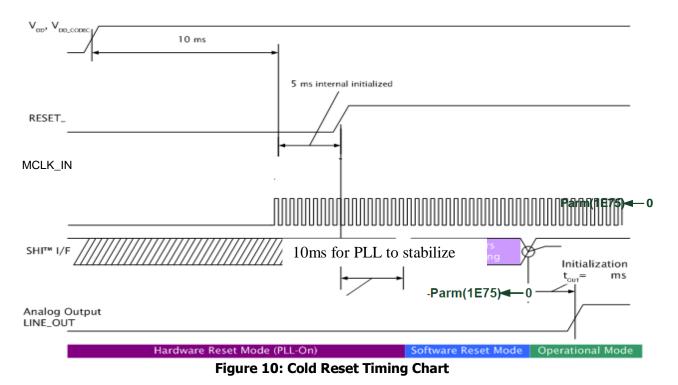
Absolute maximum continuous ratings are those values beyond which damage to the device could occur. Exposure to those conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under these conditions is not implied.

| Parameter                    | Symbol           | Min   | Max Rating | Unit |
|------------------------------|------------------|-------|------------|------|
| Digital Power Supply Voltage | VDD              | -0.5  | 2.5        | V    |
| Analog Power Supply Voltage  | VDDA             | -0.5  | 2.5        | V    |
| Latch Up Current             | LU               | -200  | 200        | mA   |
| Storage Temperature          | T <sub>stg</sub> | -40   | 150        | ٥C   |
| Juntion Temperature          | TJ               | -     | 125        | ٥C   |
| ESD (Human body model)       | VESDHBM          | -2000 | 2000       | V    |
| ESD (Machine model)          | VESDMM           | -200  | 200        | V    |

Table 5: Absolute Maximum Ratings

# **3.2 DC Characteristics**

| Parameters and Symbols                                |                            | Spe      | Specification |         |      | Conditions/Remarks                               |
|-------------------------------------------------------|----------------------------|----------|---------------|---------|------|--------------------------------------------------|
|                                                       |                            | Min      | Тур           | Max     | Unit |                                                  |
| Power Supply for the Digital CORE domain              | $V_{\text{DD}}$            | 1.71     | 1.8           | 2.0     | v    |                                                  |
| Power Supply for the Analog domain                    | V <sub>DDA</sub>           | 1.71     | 1.8           | 2.0     | v    |                                                  |
|                                                       |                            | -        | 10            |         | mA   | In ANA_COM bypass                                |
| Active Power Supply Current                           | $\mathrm{I}_{\mathrm{SU}}$ | -        | 13            |         | mA   | 1 microphone mode                                |
|                                                       |                            | -        | 13            |         | mA   | 2 microphones mode                               |
| Total Power Dissipation<br>(Based on two microphones) | T <sub>PD</sub>            | -        | 23            |         | mW   | $V_{DD}$ =1.8V, $V_{DDA}$ =1.8V, $T_{amb}$ =25°C |
| Power Down Current                                    | $\mathbf{I}_{PD}$          | -        | 5             |         | μA   |                                                  |
| Input Leakage Current                                 | I <sub>IH</sub>            | -        | -             | 10      | μA   | V <sub>DD</sub> =V <sub>DDA</sub> =1.8V          |
|                                                       | $I_{IL}$                   | -        | -             | 10      | μA   | $V_{DD} = V_{DDA} = 0$                           |
| Input Voltage High                                    | $V_{\mathrm{IH}}$          | 0.65VDD  | -             | VDD+0.3 | v    |                                                  |
| Input Voltage Low                                     | $V_{\text{IL}}$            | -0.3     | -             | 0.35VDD | v    |                                                  |
| Output Voltage High                                   | V <sub>OH</sub>            | VDD-0.45 | -             | -       | V    |                                                  |
| Output Voltage Low                                    | V <sub>OL</sub>            | -        | -             | 0.45    | V    |                                                  |
| Input Capacitance                                     | C <sub>IN</sub>            | -        | 10            | -       | pF   |                                                  |
| VDD Power Ripple<br>(AC element)                      | -                          |          |               | 100     | mV   | Ripple should be limited for AC performance.     |


### **Table 6: DC Characteristics**

# **3.3 Timing Characteristics**

### **Table 7: Timing Characteristics**

| Parameters and Symbols                                           |                   | Sp    | Specification |       | Unit | Conditions/Remarks                                           |
|------------------------------------------------------------------|-------------------|-------|---------------|-------|------|--------------------------------------------------------------|
| r arameters and Symb                                             | Min               | Тур   | Max           |       |      |                                                              |
| Reset Holding Time (low)                                         | t <sub>rst</sub>  | 60    | -             | -     | μS   |                                                              |
| Power-Down Active Time                                           | T <sub>PDA</sub>  | 6.6   |               |       |      |                                                              |
| Parameters Restore Time<br>after Reset                           | t <sub>PARA</sub> | 4     | -             | -     | ms   |                                                              |
| Setup time from master clock to rising edge of RST               | tCLK2R<br>ST      | 80    |               |       | us   |                                                              |
| LINE_OUT Output Signal<br>Delay Time After Setting<br>Parameters | t <sub>our</sub>  | -     | TBD           | -     | ms   | see footnote*                                                |
| Digital Input Raising Time                                       | t <sub>IR</sub>   | -     | 5             | -     | ns   | C <sub>L</sub> =20pF (typ and max)<br>No load (min)          |
| Digital Input Falling Time                                       | $t_{IF}$          | -     | 5             | -     | ns   |                                                              |
| Digital Output Raising Time                                      | t <sub>OR</sub>   | -     | 5             | -     | ns   | $R_L=1.25k\Omega$ , $C_L=20pF$ (typ and max). No load (min). |
| Digital Output Falling Time                                      | t <sub>OF</sub>   | -     | 5             | -     | ns   |                                                              |
|                                                                  |                   | 3     | -             | 32    | MHz  |                                                              |
| Master Clock Frequency                                           | F <sub>MCK</sub>  | 4.096 | -             | 40.96 | MHz  | MCLK pin                                                     |
| Master Clock Duty Cycle                                          | D <sub>MCK</sub>  | 45    | 50            | 55    | %    | MCLK pin                                                     |
| SHI Clock Frequency<br>(SCK)                                     | F <sub>SCK</sub>  | -     | 100           | 400   | kHz  | Input mode supports up to fast-mode (400kb/s)                |
| SHI Clock Duty Cycle                                             | D <sub>SCK</sub>  | 45    | 50            | 55    | %    |                                                              |
| SHI SDA Input Setup Time                                         | t <sub>DS</sub>   | 10    | -             | -     | Ns   |                                                              |
| SHI SDA Input Hold Time                                          | t <sub>DH</sub>   | 10    | -             | -     | Ns   |                                                              |

\* Power-off to power-down waiting time depends on the power supply discharge time in the system. Larger power supply decoupling capacitors in the system may take longer time to discharge. The discharging component may help shortening the time.



Note: All input pins should be kept low (at GND) level before the chip (VDD) is powered. Failure to ensure the logic state of inputs before power supply settles, may cause malfunction of the processor.

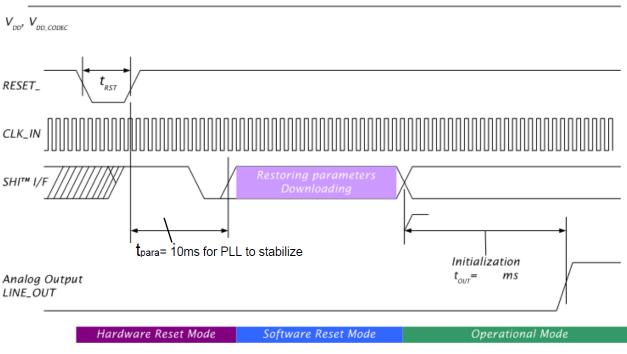



Figure 11: External Hardware Power Reset Timing Chart

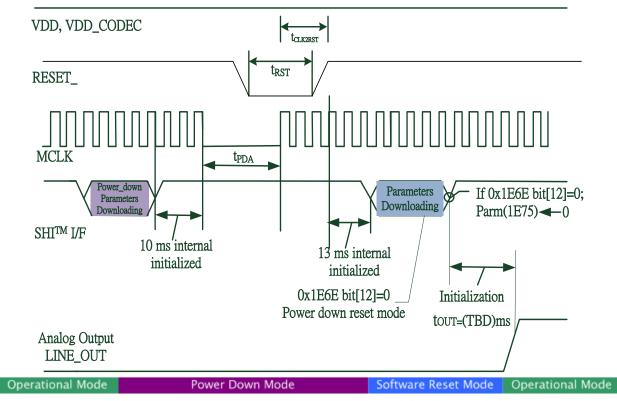
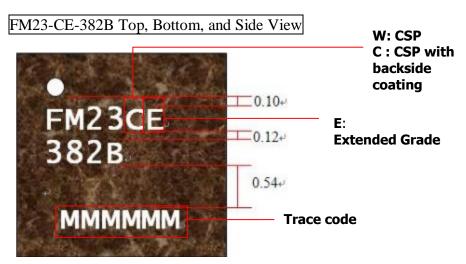


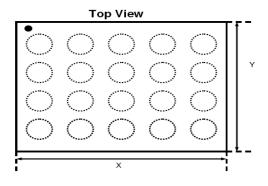

Figure 12: External Power-Down Timing Chart

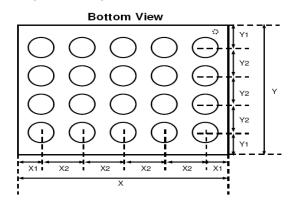
# 4. Pin Definition Details

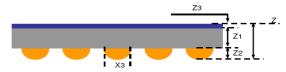

| Pin number | Pin name   | type              | Description                                                                                                                                     |  |  |
|------------|------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A1         | Reserved   |                   |                                                                                                                                                 |  |  |
| A2         | Reserved   |                   |                                                                                                                                                 |  |  |
| A3         | MIC1_P     | Analog In         | Microphone 1 input (+).                                                                                                                         |  |  |
| A4         | MIC0_P     | Analog In         | Microphone 0 input (+).                                                                                                                         |  |  |
| A5         | MIC0_N     | Analog In         | Microphone 0 input (-).                                                                                                                         |  |  |
| B1         | SDA        | Digital<br>In/Out | This pin is a serial data input/output of I2Cwith 3.3V tolerance.                                                                               |  |  |
| B2         | RST_       | Digital In        | Reset input. Active low.<br>This pin is 3.3V tolerant.                                                                                          |  |  |
| B3         | MIC1_N     | Analog In         | Microphone 1 input (-).                                                                                                                         |  |  |
| B4         | LINE_IN_N  | Analog In         | Line-in input (-).                                                                                                                              |  |  |
| B5         | LINE_IN_P  | Analog In         | Line-in input (+).                                                                                                                              |  |  |
| C1         | VSS        | GND               | Digital ground.                                                                                                                                 |  |  |
| C2         | SCLK       | Digital In        | Clock input of I2C.<br>This pin is a slave clock input with 3.3V tolerant.<br>And it can speed up to 400kb/s with<br>a proper pull-up resistor. |  |  |
| C3         | VSSA       | GND               | Analog ground                                                                                                                                   |  |  |
| C4         | LINE_OUT_P | Analog Out        | Line-out output (+).                                                                                                                            |  |  |
| C5         | LINE_OUT_N | Analog Out        | Line-out output (-).                                                                                                                            |  |  |
| D1         | MCLK       | Digital In        | Master clock input.                                                                                                                             |  |  |
| D2         | VDD        | Power             | Digital Power Supply                                                                                                                            |  |  |
| D3         | GPIO0      | Digital In/Out    | GPIO pin                                                                                                                                        |  |  |
| D4         | VDDA       | Power             | Analog Power Supply                                                                                                                             |  |  |
| D5         | VREF       | Power Output      | Reference Voltage Output Pin. About 0.5<br>PVDDA.                                                                                               |  |  |

#### Table 8: WLCSP Pin Description

Note:


IN – input pin OUT – Output pin IN/OUT – Input/Output bidirectional pin


## 5. Package Dimensions




Font size tolerance: (+/- 0.05mm)

Marking shift tolerance: (+/-0.15mm)







| Description                       | Symbol | Unit | Dimension   |
|-----------------------------------|--------|------|-------------|
| IC Length                         | х      | um   | 2646.4+/-10 |
| IC Width                          | Y      | um   | 2213.5+/-10 |
| Space between edge and pad center | X1     | um   | 323.2+/-10  |
| Space between adjacent pad        | X2     | um   | 500         |
| Bump Diameter                     | ХЗ     | um   | 260+/-25    |
| Space between edge and pad center | Y1     | um   | 356.7+/-10  |
| Space between adjacent pad        | Y2     | um   | 500         |
| Height IC+Bump+Backside Coating   | Z      | um   | 798+/-30    |
| Height IC                         | Z1     | um   | 573         |
| Bump                              | Z2     | um   | 200+/-20    |
| Backside Coating                  | Z3     | um   | 25+/-10     |

| Figure 13: CSP Package Dime | nsions |
|-----------------------------|--------|
|-----------------------------|--------|

# 6. Ordering Infomation

| Order Code                                           | FM23-CE-382B                                                                      |
|------------------------------------------------------|-----------------------------------------------------------------------------------|
| Package Type                                         | Proprietary 20-pin WLCSP Package with back side<br>coating(0.04mm±0.004)          |
| Package Size and Dimensions                          | $2.646\pm0.01$ mm(L) $	imes$ 2.213 $\pm0.01$ mm(W ) $	imes$ 0.798 $\pm0.03$ mm(H) |
| Pitch                                                | 0.5 mm                                                                            |
| Lead-free                                            | Green                                                                             |
| Temperature Range Grade                              | Extended Grade                                                                    |
| ESD Protection                                       | HBM 2 kV/MM 200V                                                                  |
| Operational Temperature Range<br>(T <sub>amb</sub> ) | Extended Grade, -20°C to 70 °C                                                    |
| Storage Temperature Range (T <sub>stq</sub> )        | -40°C to 150°C                                                                    |

#### Table 9: Available Package Type and Temperature Range

### Reference

### Terminology

# Table 10: Terminology

| Term  | Definition                         |
|-------|------------------------------------|
| AEC   | Acoustic Echo Cancellation         |
| BF    | Beam-Forming                       |
| ADC   | Analog to Digital Conversion       |
| DAC   | Digital to Analog Conversion       |
| DRC   | Dynamic Range Control              |
| ESD   | ElectroStatic Discharge            |
| GPIO  | General Purpose Input/Output       |
| LO    | Line out                           |
| MIC   | Microphone                         |
| PCM   | Pulse Code Modulation              |
| PGA   | Programmable Gain Amplifier        |
| PLL   | Phase Locked Loop                  |
| RAM   | Random Access Memory               |
| ROM   | Random Only Memory                 |
| SOC   | System on Chip                     |
| SHI   | Serial Host Interface              |
| SNR   | Signal to Noise Ratio              |
| WLCSP | Wafer Level Chip Scale Integration |

### **Related References**

### **Table 11: Document References**

| Document                                                  | Location                     |
|-----------------------------------------------------------|------------------------------|
| FM-23 Product Brief                                       | Fortemedia sales and support |
| FM-23 Schematics Layout Guide                             | Fortemedia sales and support |
| FM-23 Reference Design Schematics                         | Fortemedia sales and support |
| FM WLCSP Voice Processors – PCB Design and Assembly Guide | Fortemedia sales and support |
| FM-23 Configuration Manual                                | Fortemedia sales and support |
| FM-23 Evaluation Module – Operational Manual              | Fortemedia sales and support |